A damned energy loss for migratory fishes: dams!

  • Help
  • Find
  • Facebook
  • Twitter
Blog - Bioenergetics for management and conservation

About

About and Contact

Anglet, France

Bioenergetics for management and conservation is a section of the Evolutionary dynamics and management application course at University of Pau and Pays de l’Adour (Anglet, France). In this course, 2nd

Read more

You are here:
  • >
  • > A damned energy loss for migratory fishes: dams!

A damned energy loss for migratory fishes: dams!by Manon Salerno

Published by Charlotte Recapet the June 10, 2019 on 11:42 AM

Many species of fish grow in the sea and breed in rivers. These migratory fish are called anadromous. When a migratory fish is ready to breed, it leaves the sea and up a river to lay watershed upstream. It will find the optimum conditions to reproduce and allow the development of its offspring. But to do so, they spend a lot of energy on the upstream and sometimes, obstacles like dams in their path does not make it easy for them. This is the case of American Shad in the Connecticut River in the United States. Since the 1970s, 4 hydroelectric dams have been built in the river. Even if they are equipped with fish ladders, these obstacles require the Shad more energy to cross them than if they were not present. We know energy availability can be a limiting factor in migration. Thus, in 1999, scientists wanted to understand energy management in these fish, especially when it is modified by the presence of such.

Any organism needs energy to perform the movements / migrations necessary for its life cycle. When they are heading into a period that will not allow them to feed (overwintering, migration), some species store energy, such as the bear before hibernating. For American Shad, this stock has to be created before migration because it will not feed during this move. First, scientists have found these are subcutaneous lipid reserves and skin constitute a special tissue for energy storage, which is rather unusual. Salmon, for example, usually mobilizes lipids from muscles and viscera. In contrast, for migration, somatic tissues (red and white muscles and skin) provide about 90% of the energy required in shad.

According to this study, crossing dams is expensive in energy, especially for females. In fact, American Shad is a species able to reproduce itself several times in its life, but if migration requires too much energy, it will only happen once. It is therefore easy to understand a multitude of dams can have an influence on the reproduction of these fish and therefore on population size, even if they are equipped with systems allowing fish to pass. Not to mention some fish do not even find the fish ladder. These are more likely to be stressed, eaten by predators such as birds, or competing with other fish and unlikely to breed.

Although fish ladders are quite efficient at the upstream for the American Shad, it is sometimes not suitable for other species. In addition, the outmigration can also present risks of mortality (water retention, drop height etc ...). It is therefore essential to remove the dams for which their function is not provided anymore. But in the United States, the erasure of small dams often meets opposition from local communities. Even though many dams have been removed, they represent a strong historical or landscape value for the inhabitants, creating tensions between the supporters of the restoration and the local communities. This situation reminds the context existing in France, where the aesthetic and historical arguments are very powerful. Many dams are attached to mills and water plants of olden times are therefore seen as a "living historical landscape" very characteristic of their landscape. Because of the local character of each operation, an opposition not necessarily collective but influential and well directed, is enough to block some sites.

Cited study: J. B. K. Leonard and S. D. McCormick (1999) Effects of migration distance on whole-body and tissue-specific energy use in American shad (Alosa sapidissima). Canadian Journal of Fisheries and Aquatic Sciences 56(7), 1159-1171

Creative Commons License
This post is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Fields with an asterisk * are mandatory